

Letters

Corrections to "Dual Mode Dielectric Resonator Loaded Cavity Filters"

S. J. FIEDZIUSZKO, MEMBER, IEEE

Due to typographical errors in the above referenced paper¹, the following corrections should be made.

On page 1313, in formula (4), J^1 should be replaced with J' ; also

$$h^2 = \epsilon k_0^2 - \beta^2$$

$$p^2 = \beta^2 - k_0^2.$$

In formula (6), the expression $J'_1(1.841) = 0$ should be separated from the expression for γ_0^2 .

On page 1314, formula (8) should read

$$k = 0.4082 M \frac{\gamma_0^3 \left(\frac{1.841}{b} \right)^2}{k_0^2 (\sinh \gamma_0 t - \gamma_0 t)}.$$

Manuscript received December 9, 1982.

The author is with the Ford Aerospace and Communication Corp., Palo Alto, CA 94303.

¹S. J. Fiedziuszko, *IEEE Trans. Microwave Theory Tech.*, vol. MTT-30, pp. 1311-1316, Sept. 1982.

Corrections to "Waveguide Electrooptic Modulators"

ROD C. ALFERNESS

The following corrections should be made to the above paper¹.

In (3), n^2 should be n^3 .

Equation (8) should read

$$\Delta \beta L = -\pi n^3 r \Gamma \frac{V}{G} \frac{L}{\lambda}.$$

Equation (12) should read

$$f_t = \frac{c}{\pi \sqrt{\epsilon_{\text{eff}} L}}.$$

On page 1127, column two, 9th line below (22) should read
(> 5 GHz).

Equation (23) should read

$$V/\Delta f = \frac{\pi}{2c} \left(\frac{\sqrt{\epsilon_{\text{eff}}} \delta}{n^3 r} \right) p \lambda \frac{G}{\Gamma}.$$

Equation (24) should read

$$(V/\Delta f)_{\min} = \frac{\pi}{8c} \left(\frac{\sqrt{\epsilon_{\text{eff}}} \delta}{n^{7/2} r \sqrt{\Delta n}} \right) \frac{p \lambda^2}{\Gamma}.$$

In addition, a type set version of Table I is shown below.

Δn	Loss (dB/cm)	w_{\min}/λ	$n^3 r$ ($\times 10^{-6} \mu\text{m}/\text{v}$)	$\frac{\epsilon_{\text{eff}}}{n^3 r}$ (arb)	$N_m \left[1 - \frac{N_0}{N_m} \right]$
LiNbO ₃ 0.01-0.02	1, $\lambda = 0.63 \mu\text{m}$ ¹¹³ 0.5, $\lambda = 1.15 \mu\text{m}$ ⁷⁵ 0.3, $\lambda = 1.32 \mu\text{m}$ ¹¹⁴	2.4	328	55	2
GaAs	0.1	~4	0.6	49	< 0.3

Manuscript received January 19, 1983.

R. C. Alferness is with Bell Laboratories, Holmdel NJ 07733.

¹R. C. Alferness, *IEEE Trans. Microwave Theory Tech.*, vol. MTT-30, pp. 1121-1137, Aug. 1982.